Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Scanning e-beam pumped resonant periodic gain VCSEL based on an MOVPE-grown GaInP/A1GaInP MQW structure

Identifieur interne : 000450 ( Russie/Analysis ); précédent : 000449; suivant : 000451

Scanning e-beam pumped resonant periodic gain VCSEL based on an MOVPE-grown GaInP/A1GaInP MQW structure

Auteurs : RBID : Pascal:05-0080453

Descripteurs français

English descriptors

Abstract

Twenty five-period Ga0.5In0.5P/(Al0.7Ga0.3)0.5In0.5P quantum well (QW) structure was grown by MOVPE on GaAs substrates misoriented by 10° from (00 1) to (111)A and fabricated into a microcavities with dielectric oxide mirrors. Lasing in the 625-650 nm spectral range with output power up to 9 W was achieved under scanning electron beam longitudinal pumping at room temperature. The laser wavelength, threshold and output power were found to depend critically on the alignment of QW period with both the cavity and the multi-quantum well (MQW) gain spectrum. The minimum threshold current density for a 40 keV electron energy was 8 A/cm2. We have shown that low-threshold and high-power lasing requires the position of the QWs to coincide with the antinodes of the cavity resonance. Furthermore, the maximum of the gain spectrum, for ground state transitions, should also align with this etalon resonance. In order to control the lasing threshold to within 10% of its minimum, the MQW period should be tuned to the optimum value with an accuracy of about 1%.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:05-0080453

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Scanning e-beam pumped resonant periodic gain VCSEL based on an MOVPE-grown GaInP/A1GaInP MQW structure</title>
<author>
<name sortKey="Bondarev, V Yu" uniqKey="Bondarev V">V. Yu. Bondarev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>P.N. Lebedev Physical Institute of RAS, 53 Leninsky pr.</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kozlovsky, V I" uniqKey="Kozlovsky V">V. I. Kozlovsky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>P.N. Lebedev Physical Institute of RAS, 53 Leninsky pr.</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Krysa, A B" uniqKey="Krysa A">A. B. Krysa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>EPSRC National Centre for III-V Technologies, University of Sheffield</s1>
<s2>Sheffield S1 3JD</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield S1 3JD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Roberts, J S" uniqKey="Roberts J">J. S. Roberts</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>EPSRC National Centre for III-V Technologies, University of Sheffield</s1>
<s2>Sheffield S1 3JD</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Sheffield S1 3JD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Skasyrsky, Ya K" uniqKey="Skasyrsky Y">Ya. K. Skasyrsky</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>P.N. Lebedev Physical Institute of RAS, 53 Leninsky pr.</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">05-0080453</idno>
<date when="2004">2004</date>
<idno type="stanalyst">PASCAL 05-0080453 INIST</idno>
<idno type="RBID">Pascal:05-0080453</idno>
<idno type="wicri:Area/Main/Corpus">00A863</idno>
<idno type="wicri:Area/Main/Repository">00AD49</idno>
<idno type="wicri:Area/Russie/Extraction">000450</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cathodoluminescence</term>
<term>Crystal growth from vapors</term>
<term>Current density</term>
<term>Electron beam</term>
<term>Experimental study</term>
<term>Gallium phosphides</term>
<term>III-V semiconductors</term>
<term>Indium phosphides</term>
<term>MOVPE method</term>
<term>Microcavities</term>
<term>Multiple quantum well</term>
<term>Nanostructured materials</term>
<term>Semiconductor lasers</term>
<term>Ternary compounds</term>
<term>VPE</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Etude expérimentale</term>
<term>Croissance cristalline en phase vapeur</term>
<term>Epitaxie phase vapeur</term>
<term>Méthode MOVPE</term>
<term>Microcavité</term>
<term>Faisceau électronique</term>
<term>Densité courant</term>
<term>Cathodoluminescence</term>
<term>Laser semiconducteur</term>
<term>Gallium phosphure</term>
<term>Indium phosphure</term>
<term>Composé ternaire</term>
<term>Semiconducteur III-V</term>
<term>Nanomatériau</term>
<term>Puits quantique multiple</term>
<term>GaInP</term>
<term>Ga In P</term>
<term>AlGaInP</term>
<term>Al Ga In P</term>
<term>8107S</term>
<term>4255P</term>
<term>Substrat GaAs</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Twenty five-period Ga
<sub>0.5</sub>
In
<sub>0.5</sub>
P/(Al
<sub>0.7</sub>
Ga
<sub>0.3</sub>
)
<sub>0.5</sub>
In
<sub>0.5</sub>
P quantum well (QW) structure was grown by MOVPE on GaAs substrates misoriented by 10° from (00 1) to (111)A and fabricated into a microcavities with dielectric oxide mirrors. Lasing in the 625-650 nm spectral range with output power up to 9 W was achieved under scanning electron beam longitudinal pumping at room temperature. The laser wavelength, threshold and output power were found to depend critically on the alignment of QW period with both the cavity and the multi-quantum well (MQW) gain spectrum. The minimum threshold current density for a 40 keV electron energy was 8 A/cm
<sup>2</sup>
. We have shown that low-threshold and high-power lasing requires the position of the QWs to coincide with the antinodes of the cavity resonance. Furthermore, the maximum of the gain spectrum, for ground state transitions, should also align with this etalon resonance. In order to control the lasing threshold to within 10% of its minimum, the MQW period should be tuned to the optimum value with an accuracy of about 1%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>272</s2>
</fA05>
<fA06>
<s2>1-4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Scanning e-beam pumped resonant periodic gain VCSEL based on an MOVPE-grown GaInP/A1GaInP MQW structure</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>12th International Conference on Metalorganic Vapor Phase Epitaxy</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BONDAREV (V. Yu.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KOZLOVSKY (V. I.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KRYSA (A. B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROBERTS (J. S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SKASYRSKY (Ya. K.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BIEFELD (R. M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>STRINGFELLOW (G. B.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>P.N. Lebedev Physical Institute of RAS, 53 Leninsky pr.</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>EPSRC National Centre for III-V Technologies, University of Sheffield</s1>
<s2>Sheffield S1 3JD</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Sandia National Laboratory</s1>
<s2>Albuquerque, NM</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>559-563</s1>
</fA20>
<fA21>
<s1>2004</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000121240620890</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2005 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>11 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>05-0080453</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Twenty five-period Ga
<sub>0.5</sub>
In
<sub>0.5</sub>
P/(Al
<sub>0.7</sub>
Ga
<sub>0.3</sub>
)
<sub>0.5</sub>
In
<sub>0.5</sub>
P quantum well (QW) structure was grown by MOVPE on GaAs substrates misoriented by 10° from (00 1) to (111)A and fabricated into a microcavities with dielectric oxide mirrors. Lasing in the 625-650 nm spectral range with output power up to 9 W was achieved under scanning electron beam longitudinal pumping at room temperature. The laser wavelength, threshold and output power were found to depend critically on the alignment of QW period with both the cavity and the multi-quantum well (MQW) gain spectrum. The minimum threshold current density for a 40 keV electron energy was 8 A/cm
<sup>2</sup>
. We have shown that low-threshold and high-power lasing requires the position of the QWs to coincide with the antinodes of the cavity resonance. Furthermore, the maximum of the gain spectrum, for ground state transitions, should also align with this etalon resonance. In order to control the lasing threshold to within 10% of its minimum, the MQW period should be tuned to the optimum value with an accuracy of about 1%.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07S</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Croissance cristalline en phase vapeur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Crystal growth from vapors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>VPE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microcavité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Microcavities</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Faisceau électronique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Electron beam</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Haz electrónico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Densité courant</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Current density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Cathodoluminescence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Cathodoluminescence</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium phosphure</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium phosphides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>19</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>20</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>21</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>GaInP</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Ga In P</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>AlGaInP</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Al Ga In P</s0>
<s4>INC</s4>
<s5>55</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107S</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>052</s1>
</fN21>
<fN44 i1="01">
<s1>PSI</s1>
</fN44>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>ICMOVPE-XII International Conference on Metalorganic Vapor Phase Epitaxy</s1>
<s2>12</s2>
<s3>Lahina, Hawaii USA</s3>
<s4>2004-05-30</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000450 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000450 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:05-0080453
   |texte=   Scanning e-beam pumped resonant periodic gain VCSEL based on an MOVPE-grown GaInP/A1GaInP MQW structure
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024